LIFE HISTORY AND BEHAVIORAL RESPONSES TO TIME CONSTRAINTS IN A DAMSELFLY

Ecology ◽  
1999 ◽  
Vol 80 (4) ◽  
pp. 1242-1252 ◽  
Author(s):  
Frank Johansson ◽  
Locke Rowe
2019 ◽  
Vol 110 (4) ◽  
pp. 403-410 ◽  
Author(s):  
Ned A Dochtermann ◽  
Tori Schwab ◽  
Monica Anderson Berdal ◽  
Jeremy Dalos ◽  
Raphaël Royauté

AbstractThe contribution of genetic variation to phenotypes is a central factor in whether and how populations respond to selection. The most common approach to estimating these influences is via the calculation of heritabilities, which summarize the contribution of genetic variation to phenotypic variation. Heritabilities also indicate the relative effect of genetic variation on phenotypes versus that of environmental sources of variation. For labile traits like behavioral responses, life history traits, and physiological responses, estimation of heritabilities is important as these traits are strongly influenced by the environment. Thus, knowing whether or not genetic variation is present within populations is necessary to understand whether or not these populations can evolve in response to selection. Here we report the results of a meta-analysis summarizing what we currently know about the heritability of behavior. Using phylogenetically controlled methods we assessed the average heritability of behavior (0.235)—which is similar to that reported in previous analyses of physiological and life history traits—and examined differences among taxa, behavioral classifications, and other biologically relevant factors. We found that there was considerable variation among behaviors as to how heritable they were, with migratory behaviors being the most heritable. Interestingly, we found no effect of phylogeny on estimates of heritability. These results suggest, first, that behavior may not be particularly unique in the degree to which it is influenced by factors other than genetics and, second, that those factors influencing whether a behavioral trait will have low or high heritability require further consideration.


Ecology ◽  
2006 ◽  
Vol 87 (4) ◽  
pp. 809-815 ◽  
Author(s):  
Robby Stoks ◽  
Marjan De Block ◽  
Stefanie Slos ◽  
Wendy Van Doorslaer ◽  
Jens Rolff

2020 ◽  
Vol 49 (5) ◽  
pp. 1032-1040
Author(s):  
Karthikeyan Chandrasegaran ◽  
Rasikapriyaa Sriramamurthy ◽  
Avehi Singh ◽  
Pooja Ravichandran ◽  
Suhel Quader

Abstract Antipredatory behavioral responses tend to be energetically expensive, and prey species thus need to resolve trade-offs between these behaviors and other activities such as foraging and mating. While these trade-offs have been well-studied across taxa, less is known about how costs and benefits vary in different life-history contexts, and associated consequences. To address this question, we compared responses of the yellow fever mosquito (Aedes aegypti [Diptera: Culicidae]) to predation threat from guppy (Poecilia reticulata [Cyprinodontiformes: Poeciliidae]) across two life-history stages—larvae (data from previous study) and pupae (from this study). Pupae are motile but do not feed and are comparable to larvae in terms of behavior. To understand how physiological costs affect the threat sensitivity of pupae, we used sex (with size as a covariate) as a proxy for stored energy reserves, and quantified movement and space use patterns of male (small-sized) and female (large-sized) pupae when exposed to predation threat. We found that pupae did not alter movement when exposed to predator cues but instead altered spatial use by spending more time at the bottom of the water column. We found no effect of pupa sex (or size) on the behavioral responses we measured. We conclude that pupa behavior, both antipredatory and otherwise, is primarily targeted at minimizing energy expenditure, as compared with larval behavior, which appears to balance energy expenditure between the opposing pressures of foraging and of avoiding predation. We suggest that antipredatory defenses in metamorphosing prey are modulated by varying energetic trade-offs associated with different life-history stages.


2011 ◽  
Vol 57 (3) ◽  
pp. 351-362 ◽  
Author(s):  
A. P. Møller

Abstract Behavioral responses to environmental change are the mechanisms that allow for rapid phenotypic change preventing temporary or permanent damage and hence preventing reductions in fitness. Extreme climatic events are by definition rare, although they are predicted to increase in amplitude and frequency in the coming years. However, our current knowledge about behavioral responses to such extreme events is scarce. Here I analyze two examples of the effects of extreme weather events on behavior and life history: (1) A comparison of behavior and life history during extremely warm and extremely cold years relative to normal years; and (2) a comparison of behavior before and after the extremely early snowfall in fall 1974 when numerous birds died in the Alps during September-October. Behavioral and life history responses of barn swallows Hirundo rustica to extremely cold and extremely warm years were positively correlated, with particularly large effect sizes in cold years. Extreme mortality in barn swallows during fall migration 1974 in the Alps eliminated more than 40% of the breeding population across large areas in Central and Northern Europe, and this affected first arrival date, changes in timing and extent of reproduction and changes in degree of breeding sociality supposedly as a consequence of correlated responses to selection. Finally, I provide directions for research that will allow us to better understand behavior and life history changes in response to extreme climate change.


Ecology ◽  
2015 ◽  
Vol 96 (4) ◽  
pp. 1128-1138 ◽  
Author(s):  
Dirk J. Mikolajewski ◽  
Marjan De Block ◽  
Robby Stoks

2015 ◽  
Vol 85 (1) ◽  
pp. 187-198 ◽  
Author(s):  
Szymon Sniegula ◽  
Maria J. Golab ◽  
Szymon M. Drobniak ◽  
Frank Johansson

Sign in / Sign up

Export Citation Format

Share Document